Karakteristik af målgruppe og komparativ analyse af udvalgte decentrale anlægskoncepter med store varmepumper

Forberedelse af demonstrationsprogram for store el-drevne varmepumper
Indholdsfortegnelse

INDHOLDSFORTEGNELSE .. 2
NOMENKLATUR ... 4
FORORD .. 5

1. KORT ORIENTERING OM PRINCIPPER, PLANER OG STATUS FOR STORE ELDREVNE VARMEPUMPER .. 6
 1.1 ELDREVNE VARMEPUMPER I ENERGISYSTEMET .. 6
 1.2 PLANER .. 7
 1.3 STATUS .. 8

2. KARAKTERISTIK AF MÅLGRUPPEN ... 10
 2.1 MÅLGRUPPER ... 10
 2.2 TEKNISK KARAKTERISTIK .. 10
 2.3 PRISKARAKTERISTIK .. 14
 2.4 ØPSAMLING PÅ TEKNISK OG ØKONOMISK KARAKTERISTIK .. 16

3. MODELANALYSER .. 17
 3.1 REFERENCEANLÆG ... 17
 3.2 OMSTILLINGSSTRATEGIER .. 17
 3.3 ANLÆGSKONCEPTER ... 19
 3.4 DESIGNANALYSER ... 22
 3.4.1 CHP referencen .. 22
 3.4.2 CHP-HP-WW (”klassisk løsning” med spildvarme, målgruppe A) .. 26
 3.4.3 CHP-BB referencen (fritvalgsværk) og CHP-BB-HP-WW .. 29
 3.4.4 Fuldlasttimer for varmepumpen ... 31
 3.4.5 CHP-HP tekniske-CO2 emissioner ... 33
 3.5 KOMPARATIV ANALYSE – RANGORDNING AF ANLÆGSKONCEPTER .. 34
 3.5.1 Fossilt brændselsforbrug ... 35
 3.5.2 Tekniske CO2 emissioner ... 36
 3.5.3 Vindvenlighed ... 37
 3.5.4 Vindvolumen - forbrug ... 40
 3.5.5 Vindvolumen – produktion ... 41
 3.5.6 Selskabsøkonomi .. 42
 3.6 SELSKABSOEKONOMISK TILSKUDBEHOV ... 43
 3.6.1 Målgruppe A ... 43
 3.6.2 Målgruppe C (Fritvalgsværker) ... 45

4. KONKLUSION OG DISKUSSION ... 47
 4.1 KARAKTERISTIK AF MÅLGRUPPE ... 47
 4.2 LØSNINGSRUM: LEVETIDSFORLÆNGELSE ELLER SKROTNING, EKSTERN ELLER INTERN VARMEMÅLE? 47
 4.3 SELSKABSOEKONOMI OG STØTTENIVEAU ... 49
 4.4 VINDVENLIGE VARMEPUMPER ... 50
 4.5 FRA KRAFTVARME TIL KRAFT-TIL-VARME ... 51
Nomenklatur

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Luft-kilde (Air Source)</td>
</tr>
<tr>
<td>BB</td>
<td>Biomassekedel (Biomass Boiler)</td>
</tr>
<tr>
<td>CHP</td>
<td>Kraftvarmeanlæg (Combined Heat and Power)</td>
</tr>
<tr>
<td>CO2</td>
<td>Naturligt CO2 kølemiddel</td>
</tr>
<tr>
<td>CS</td>
<td>Koldt mellemlager til lagring af intern lavtemperatur-varmekilde, f.eks. solvarme eller røggas (Cold Storage)</td>
</tr>
<tr>
<td>DSV</td>
<td>Demonstrationsprogram for Store Varmepumper</td>
</tr>
<tr>
<td>EB</td>
<td>Elkedel (Electric Boiler)</td>
</tr>
<tr>
<td>FDR</td>
<td>Selskabsøkonomisk diskonteringsrente (Financial Discount Rate)</td>
</tr>
<tr>
<td>FG</td>
<td>Røggaskøling (Flue Gas)</td>
</tr>
<tr>
<td>FL</td>
<td>Finanslov</td>
</tr>
<tr>
<td>Frozen</td>
<td>El- og brændselpriser fastholdt på 2016 niveau, samt 2016 grundbeløb, evt. investeringer annuieres</td>
</tr>
<tr>
<td>GB</td>
<td>Gaskedel (Gas Boiler)</td>
</tr>
<tr>
<td>GS</td>
<td>Jord-kilde (Ground Source)</td>
</tr>
<tr>
<td>HP</td>
<td>Varmepumpe (Heat Pump)</td>
</tr>
<tr>
<td>ifm.</td>
<td>i forbindelse med</td>
</tr>
<tr>
<td>ift.</td>
<td>i forhold til</td>
</tr>
<tr>
<td>m/u</td>
<td>med eller uden</td>
</tr>
<tr>
<td>mht.</td>
<td>med hensyn til</td>
</tr>
<tr>
<td>MILP</td>
<td>Mixed-Integer Linear Program</td>
</tr>
<tr>
<td>MSW</td>
<td>Affaldsforbrænding (Municipal Solid Waste)</td>
</tr>
<tr>
<td>MWe</td>
<td>Elproduktionseffekt</td>
</tr>
<tr>
<td>MWq</td>
<td>Varme-produktionseffekt</td>
</tr>
<tr>
<td>NH3</td>
<td>Naturligt ammoniak kølemiddel</td>
</tr>
<tr>
<td>OB</td>
<td>Oliekedel (Oil Boiler)</td>
</tr>
<tr>
<td>SH</td>
<td>Solvarmeanlæg (Solar Heating)</td>
</tr>
<tr>
<td>WW</td>
<td>Spildvarme-kilde (Waste Water)</td>
</tr>
</tbody>
</table>
Forord

På Finansloven for 2015 (FL 2015) er afsat 55,2 mio. kr. til et nyt 2-årigt demonstrationsprogram for store el-drevne varmepumper i fjernvarmeforsyningen. Samtidig er der afsat 4,0 mio. kr. om året til et 3-årigt rejsehold.

Tabel 1 viser de overordnede budgettal.

<table>
<thead>
<tr>
<th>Budget (mio. kr)</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrationsprogram for store varmepumper</td>
<td>27,5</td>
<td>27,7</td>
<td>-</td>
</tr>
<tr>
<td>Rejsehold</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 1: FL 2015 budget for demonstrationsprogram samt rejsehold [mio. kr].

Arbejdet er bl.a. dokumenteret med udfærdigelse af såkaldt Baggrundsnotat, Principnotat, samt Business-case notat, der alle har Energistyrelsen som afsender. Desuden har assistancer omfattet overvejelser om bekendtgørelse, overvejelser om rejseholdets sammensætning og organisering, samt planlægning og afholdelse af workshop med udvalgte aktører.

Nærværende rapport omfatter:

1. Kort orientering om principper, planer og status for store eldrevne varmepumper
2. Karakteristik af målgruppe for demonstrationsprogrammet, baseret på Energistyrelsens producenttælling fra 2013 samt Energitilsynets prisstatistik,
3. Teknisk-økonomiske modelberegninger, der har haft til hensigt at afklare de energi- og miljømæssige, systemtekniske, samt selskabsøkonomiske konsekvenser af store varmepumper i den decentrale fjernvarmeforsyning.

Rapportens metodevalg og resultater er alene ENERGIANALYSE.DKs ansvar. De vurderinger, der fremsættes i rapporten, deles ikke nødvendigvis af Energistyrelsen.
1. **Kort orientering om principper, planer og status for store eldrevne varmepumper**

1.1 **Eldrevne varmepumper i energisystemet**

Siden slutningen af 1970’erne har der været stor interesse for eldrevne varmepumpers potentiale i forhold til fossil brændselsfortrængning og indregulering af vindkraft og andre diskontinuerlige vedvarende energikilder i elsystemet.

Eldrevne varmepumper kan sammen med elkedler kategoriseres som Power-To-Heat teknologi, og er i et systemperspektiv bl.a. karakteriseret ved teknologiens evne til at koble de kollektive distributionssystemer for el og fjernvarme/fjernkøling, hvor især fjernvarmesystemet i Danmark besidder en væsentlig varmelagrings kapacitet.

Figur 1 illustrerer det "smarte" energisystem, hvor eldrevne varmepumper og elkedler i den decentrale forsyning af varme og køling indtager en central position som “relokeringsteknologi”, der forbinder de kollektive distributionssystemer for el og fjernvarme/fjernkøling, hvilket kan øge systemets effektivitet og bidrage til elsystemets balancering.

![Diagram af elsystemet med eldrevne varmepumper og elkedler](image)

Figur 1: Samspillet i det “smarte” energisystem, hvor eldrevne varmepumper og elkedler indtager en central position som “relokeringsteknologi”, der forbinder de kollektive distributionssystemer for el og fjernvarme/fjernkøling [1].
1.2 Planer

Omdend der er metodisk usikkerhed forbundet med vurderingen af varmepumpers potentielle for indregulering af vindkraft, et spørgsmål, der behandles i modelanalysen, har en række organisationer og forskningsgrupper gennem årene peget på det hensigtsmæssige i en markant udbygning med store eldrevne varmepumper i fjernvarmesystemet i størrelsesordenen 300-400 MWe svarende til omkring 1.000 MWq [2-5].

Energistyrelsens fjernvarmerapport fra 2014 ("Fjernvarmens rolle i den fremtidige energiforsyning” [6]) opstiller en række scenarier for, hvordan fjernvarmesektoren kan udvikles samfundsøkonomisk optimalt ud fra regeringens mål om, at el- og fjernvarmesektoren skal være baseret på 100% VE i 2035, og at energiforsyningen samlet skal være baseret på 100% VE i 2050.

Fjernvarmeanalysen peger på, at det vil være samfundsøkonomisk fordelagtigt med en markant udbygning med el-drevne varmepumper og el-kedler, og at udbygningen i perioden frem mod 2020 med fordel bør foregå i små og mellemstore fjernvarmeområder.

![Figur 2: 2015-status for udbygning med varmepumper og elkedler, estimeret direkte effekt af Energistyrelsens kommende tilskudsordning (2017), samt fjernvarmeanalysens vind-samfundsøkonomi fremskrivninger (2020-2050).]
1.3 **Status**

I Danmark er den første eldrevne varmepumpe i moderne tid en 1 MWq (0,3 MWe) CO2 varmepumpe, der i 2005 blev etableret af Frederikshavn Fjernvarme med støtte fra EUDP. Varmepumpen anvender spildevand som varmekilde og leverer varmt vand ved 70°C med en COP på 3,1-3,4. Varmepumpen har været ramt af tekniske problemer, der især relaterer sig til varmeveksling med spildevand.

Der er siden taget initiativ til over 20 varmepumpeprojekter i Danmark, og der er aktuelt etableret i alt 9 MWe varmepumper og 405 MW elkedler i Danmark (Figur 4).

Baggrunden for udbygningen i skyldes et lavere niveau for elpriser og -afgifter i Sverige og Norge, samt udviklingen af urbane fjernkølingssystemer i Sverige. Det noteres imidlertid, at store eldrevne varmepumper aktuelt er genstand for skeptisk debat i Sverige, hvor der er fokus på elbesparelser i indsatsen for at afvikle kernekraften.

Figur 3 illustrerer udvalgte skandinaviske case studier.

Figur 3: 3 nyere varmepumper i drift i fjernvarmen i Skandinavien.
Eldrevne varmepumper (9 MWe)

<table>
<thead>
<tr>
<th>Varde</th>
<th>År</th>
<th>Varmeløkke</th>
<th>COP</th>
<th>Beregnet (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rye Kraftvarmeværk</td>
<td>Projekteret</td>
<td>Grundvand</td>
<td>8,5</td>
<td>0,37</td>
</tr>
<tr>
<td>Præstø Fjernvarme</td>
<td>Projekteret</td>
<td>Grundvand</td>
<td>3,5</td>
<td>1,06</td>
</tr>
<tr>
<td>Løgum Kloster</td>
<td>Projekteret</td>
<td>Damvarmelager (olivarme)</td>
<td>4,5</td>
<td>0,22</td>
</tr>
<tr>
<td>Horns Vand & Energi</td>
<td>Projekteret</td>
<td>Spildevand</td>
<td>3,5</td>
<td>2,71</td>
</tr>
<tr>
<td>Brønager Fjernvarmeværk</td>
<td>Projekteret</td>
<td>Grundvand</td>
<td>3,5</td>
<td>1,14</td>
</tr>
<tr>
<td>Aks Kraftvarmeværk</td>
<td>Projekteret</td>
<td>Søvand</td>
<td>3,5</td>
<td>0,40</td>
</tr>
<tr>
<td>Ærø Kyst</td>
<td>2014</td>
<td>Ærøs</td>
<td>4,67</td>
<td>0,06</td>
</tr>
<tr>
<td>Vojens Varmeverk</td>
<td>2013</td>
<td>Ærøs</td>
<td>4,1</td>
<td>0,24</td>
</tr>
<tr>
<td>Knud Jepsen A/S, Hinnerup</td>
<td>2012</td>
<td>Damvarmelager (solvarme)</td>
<td>3,5</td>
<td>0,29</td>
</tr>
<tr>
<td>Skårup</td>
<td>2014</td>
<td>Røggas</td>
<td>4,87</td>
<td>0,06</td>
</tr>
<tr>
<td>Vejen Varmeværk</td>
<td>2013</td>
<td>Røggas</td>
<td>4,1</td>
<td>0,24</td>
</tr>
<tr>
<td>Sønderjysk Næring</td>
<td>2013</td>
<td>Søvand</td>
<td>3,5</td>
<td>0,32</td>
</tr>
<tr>
<td>Skårup</td>
<td>2013</td>
<td>Spildevand</td>
<td>3,5</td>
<td>1,71</td>
</tr>
</tbody>
</table>

Elkedler (405 MWe)

<table>
<thead>
<tr>
<th>Varde</th>
<th>År</th>
<th>Varmeløkke</th>
<th>COP</th>
<th>Beregnet (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryslunde A/S, Vejle</td>
<td>2012</td>
<td>Damvarmelager (olivarme)</td>
<td>3,1</td>
<td>0,48</td>
</tr>
<tr>
<td>Løgum Kloster</td>
<td>2012</td>
<td>Damvarmelager (olivarme)</td>
<td>3,1</td>
<td>0,68</td>
</tr>
<tr>
<td>Ærø Kyst</td>
<td>2012</td>
<td>Røggas</td>
<td>3,5</td>
<td>0,24</td>
</tr>
<tr>
<td>Vojens Varmeverk</td>
<td>2013</td>
<td>Røggas</td>
<td>4,1</td>
<td>0,24</td>
</tr>
<tr>
<td>Løgum Kloster</td>
<td>2012</td>
<td>Damvarmelager (olivarme)</td>
<td>3,2</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Figur 4: Aktuel 2015 status for eldrevne varmepumper og elkedler i Danmark inkl. projekterede anlæg [7].
2. Karakteristik af målgruppen

2.1 Målgrupper

Der opereres med 4 karakteristiske målgrupper blandt de decentrale værker:

A. Decentralt kraftvarmeværk, fjernvarmeværk, erhvervsvarer, eller lokalt værk, der producerer til kollektivt fjernvarmenet, der er naturgas-baseret\(^1\), og hvor bidrag fra affald, biogas, biomasse, eller/og solvarme, udgør mindre end 10% af naturgasforbruget i det pågældende fjernvarmenet.

B. Som A, men hvor affald, biogas, biomasse, eller/og solvarme, udgør mere end 10% af naturgasforbruget i det pågældende fjernvarmenet.

C. Naturgasfyrede fritvalgsvarer, dvs. værker iblandt de i alt 85 værker, der i hhv. 2012 og 2014 har fået tilladelse til etablering af 1 MW Biomassekedel, og hvor solvarme, biogas, eller biomasse, aktuelt udgør mindre end 10% af naturgasforbruget i det pågældende fjernvarmenet.

D. Som C, men hvor solvarme, biogas, eller biomasse, aktuelt udgør mere end 10% af naturgasforbruget i det pågældende fjernvarmenet.

2.2 Teknisk karakteristik

Analysen viser at 85% af værkerne i de fire målgrupper geografisk er placeret i Vestjylland (DK1) målt på antallet af værker.

Tabel 2 viser at målgrupperne samlet set repræsenterer 27% af det samlede fjernvarmegrundlag\(^2\). Målgruppe B repræsenterer over 60% af de fire målgruppers samlede varme grundlag.

<table>
<thead>
<tr>
<th>Målgruppe</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>I alt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjernvarmenet</td>
<td>103</td>
<td>68</td>
<td>68</td>
<td>10</td>
<td>249</td>
</tr>
<tr>
<td>Produktionsanlæg</td>
<td>437</td>
<td>539</td>
<td>208</td>
<td>27</td>
<td>1.211</td>
</tr>
<tr>
<td>Elproduktionskapacitet</td>
<td>MW</td>
<td>612</td>
<td>752</td>
<td>125</td>
<td>1505</td>
</tr>
<tr>
<td>Varmeproduktionskapacitet (inkl. kedler)</td>
<td>MW</td>
<td>2.169</td>
<td>3.953</td>
<td>603</td>
<td>50</td>
</tr>
<tr>
<td>Varmeakumuleringskapacitet tank</td>
<td>mio. m³</td>
<td>0,77</td>
<td>0,74</td>
<td>0,12</td>
<td>0,01</td>
</tr>
<tr>
<td>Varmeproduktion/-grundlag</td>
<td>GWh</td>
<td>3.060</td>
<td>6.402</td>
<td>627</td>
<td>79</td>
</tr>
<tr>
<td>Andel af samlet varme grundlag (fodnote 2) %</td>
<td>8,2 %</td>
<td>17,0 %</td>
<td>1,7 %</td>
<td>0,2 %</td>
<td>27,1 %</td>
</tr>
</tbody>
</table>

Tabel 2: Summarisk karakteristik af målgruppen.

\(^1\) Nedre naturgas forbrug er ansat til 1 TJ, svarende til 278 MWh.
Figur 5 viser, at mens målgrupperne A og C helt overvejende er baserede på naturgas, så er målgruppe B karakteriseret ved at affald og biomasse udgør 65% af det samlede brændselssforbrug, mens målgruppe D er karakteriseret ved at biomasse, biogas, og i mindre grad solvarme, udgør 43% af det samlede brændselssforbrug.

![Diagram](attachment:brændselsfordeling.png)

Figur 5: Brændselssfordelingen i målgrupperne.

Figur 6 viser, at de 10 største fjernvarmeområder i målgruppe A udgør 48% af målgruppe A’s samlede varmegrundlag. De 2 største fjernvarmeområder (Silkeborg og Viborg) udgør 25% af varmegrundlaget.

![Diagram](attachment:fjernvarmeomraeder.png)

Figur 6: Top 10 fjernvarmeområder i målgruppe A ud fra varmegrundlag.
Figur 7 viser at de 10 største fjernvarmeområder i målgruppe B udgør 54% af målgruppe B’s samlede varmegrundlag, og at de 2 største fjernvarmeområder (Nordøstsjælland og Holstebro-Struer) udgør 18% af målgruppens varmegrundlag.

Figur 7: Top 10 fjernvarmeområder i målgruppe B ud fra varmegrundlag.

Figur 8 viser at de 10 største fjernvarmeområder i målgruppe C udgør 48% af målgruppe C’s samlede varmegrundlag, og at de 2 største fjernvarmeområder (Nordborg og Hundested) udgør 24% af målgruppens varmegrundlag.

Figur 8: Top 10 fjernvarmeområder i målgruppe C ud fra varmegrundlag.
Figur 9 viser at fordelingen af fjernvarmeområderne i målgruppe D ud fra varmegrundlag. De 2 største fjernvarmeområder (Ellidshøj-Ferslev og Ørnhøj-Grønbjerg) udgør 46% af målgruppens varmegrundlag.

Figur 9: Alle fjernvarmeområder i målgruppe D ud fra varmegrundlag.
2.3 Priskarakteristik

Andelen af faste omkostninger udgør i gennemsnit 22% for en standardbolig på 75 m² og 24% for en standardbolig på 130 m².

Figur 10 viser de vægtede varmepriser på basis af varmegrundlaget i de fire målgrupper. Varmeprisen er vægtet ved at prisen i det enkelte område indgår med en vægt, der svarer til varmegrundlaget i det pågældende område relativt til den pågældende målgruppes samlede varmegrundlag.

Det fremgår, at fritvalgsværkerne i målgruppe C og D har den højeste vægtede varmepris, hvilket er 30% højere end for målgruppe B, der har den laveste vægtede varmepris.

![Diagram af vægtede varmepriser](image)

Figur 10: Vægtet varmepris inkl. moms for standardhus på 130 m² (18,1 MWh/år).
Figur 11 viser den uvægtede prisfordeling for de fire målgrupper. Det fremgår, at målgruppe C oplever de højeste uvægtede fjernvarmepriser og inkluderer de værker, der har de markant højeste varmepriser. Målgruppe B har de laveste uvægtede fjernvarmepriser.

Figur 11: Uvægtet prisfordeling inkl. moms for standardhus på 130 m² (18,1 MWh/år).

Tabel 3 viser de 10 dyreste fjernvarmeværker i hver målgruppe.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nordborg</td>
<td>Vaarst-Fjellerad</td>
<td>Thorshøj</td>
<td>Værum-Ørum</td>
</tr>
<tr>
<td>2</td>
<td>Helsinge</td>
<td>Hjørring</td>
<td>Åдум</td>
<td>Ellidshøj-Ferslev</td>
</tr>
<tr>
<td>3</td>
<td>DTU-Holte-Nærum</td>
<td>Sørø</td>
<td>Præstbro</td>
<td>Ørnhøj-Grønbjerg</td>
</tr>
<tr>
<td>4</td>
<td>Ejsing</td>
<td>Gedsted</td>
<td>Sørø</td>
<td>Øster Assels</td>
</tr>
<tr>
<td>5</td>
<td>Stoholm</td>
<td>Nordøstsjælland</td>
<td>Slagslunde</td>
<td>Sønderholm</td>
</tr>
<tr>
<td>6</td>
<td>Haarby</td>
<td>Horsens</td>
<td>Oue</td>
<td>Brøns</td>
</tr>
<tr>
<td>7</td>
<td>Kloster</td>
<td>Hashøj</td>
<td>Ørding</td>
<td>Skovlund</td>
</tr>
<tr>
<td>8</td>
<td>Rødekaarsbro</td>
<td>Jægerspris</td>
<td>Ulbjerg</td>
<td>Hammershøj-Østerby</td>
</tr>
<tr>
<td>9</td>
<td>Faaborg</td>
<td>Broager</td>
<td>Ramsing-Lem-Lihme</td>
<td>Frifelt</td>
</tr>
<tr>
<td>10</td>
<td>Bredsten-Balle</td>
<td>Haslev</td>
<td>Dueholm</td>
<td>Rejsby</td>
</tr>
</tbody>
</table>

Tabel 3: Top-10 dyreste fjernvarmeværker i målgrupperne.

Det har ikke været muligt at koble alle værker/net til en pris.
2.4 **Opsamling på teknisk og økonomisk karakteristik**

Den tekniske og økonomiske karakteristik har resulteret i en opdeling og rangordning af målgruppen ift. værkstypologi, varmegrundlag, og aktuelle fjernvarmepriser.

Resultatet er et udgangspunkt for de efterfølgende modelanalyser, der opererer med en inddeling i disse målgrupper, og forventes desuden anvendt af Rejseholdet ved tilrettelegning af det opsøgende arbejde overfor målgruppen.
3. **Modelanalyser**

Der er gennemført en række komparative integrerede projektvurderinger og energisystemanalyser for perioden 2016-2035, der har til hensigt at afklare de energi- og miljømæssige, systemtekniske, samt selskabsøkonomiske konsekvenser ved etablering af store eldrevne varmepumper i den decentrale fjernvarmeforsyning.

Modelanalyserne fokuserer på målgruppe A (rene naturgasfyrede kraftvarmeområder) og C (frivillig værk i rene naturgasfyrede kraftvarmeområder).

Målgruppe B kan betragtes som en variation af målgruppe A, hvor rentabiliteten af investeringer og evt. energi- og miljømæssige fordele vil være ringere end i målgruppe A idet målgruppe B er karakteriseret ved at have bidrag fra billig affaldsforbrænding/industriel spildvarme.

Der ses desuden bort fra målgruppe D, der dels udgør blot 0,2% af varmegrundlaget, dels er karakteriseret ved betydelig biogas og biomasseanvendelse, hvilket især for biogassens vedkommende er forbundet med en række anlægspezifikke vilkår, der er svært generliserbare. Konsekvenser ved omstilling af værker i målgruppe D vurderes alene at kunne baseres på anlægspezifikke analyser.

Appendiks A 1 indeholder en mere detaljeret beskrivelse af metode, model, og forudsætninger.

3.1 Referenceanlæg

I modelanalysen indgår fortsat drift af et repræsentativt produktionsanlæg, kaldet referenceanlæg. der danner grundlag for sammenligning med alternative anlægskoncepter for målgruppe A og C.

Tabel 4 viser de referenceanlæg, der indgår i analysen. Bemærk at referenceanlægget for målgruppe C (frivillig værk) indbefatter ny-etablering af en mindre biomassekedel.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Anlægsbeskrivelse</th>
<th>Målgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHP</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvaremotor og kedel</td>
<td>A</td>
</tr>
<tr>
<td>CHP-BB</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvaremotor og kedel, samt ny-etablering af mindre biomassekedel (frivillig værk)</td>
<td>C</td>
</tr>
</tbody>
</table>

Tabel 4: Referenceanlæg. See nomenclatur for symbolforklaring.

3.2 Omstillingsstrategier

Der opereres med 2 overordnede strategier for omstilling af anlæg i målgruppen; levetidsforlængelse eller skrotning af det eksisterende anlæg. For hver overordnet strategi eksisterer en række relevante understrategier, der i denne analyse indbefatter ny-anlæg med varmepumpe, elkedel, solvarme, og/eller biomasse.
Tabel 5 viser de 7 omstillingsstrategier, som undersøges i modelanalysen.

<table>
<thead>
<tr>
<th>Overordnet strategi</th>
<th>Strategi</th>
<th>Ny-anlæg</th>
<th>Varmepumpe-varmekilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levetidsforlænges</td>
<td>1</td>
<td>Mindre supplerende varmepumpe m/u elkedel</td>
<td>Ekstern</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Lille supplerende varmepumpe m/u koldt mellemlager</td>
<td>Intern (røggas)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Mindre supplerende solvarmeanlæg, samt mindre varmepumpe m/ koldt mellemlager</td>
<td>Intern (solvarme)</td>
</tr>
<tr>
<td>Skrottes</td>
<td>4</td>
<td>Stor varmepumpe samt elkedel</td>
<td>Ekstern</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Større solvarmeanlæg, samt mindre varmepumpe og koldt mellemlager, samt elkedel</td>
<td>Intern (solvarme)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Større biomassekedel samt mindre varmepumpe</td>
<td>Ekstern</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Stor biomassekedel</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabel 5: Undersøgte omstillingsstrategier.

Strategi 1 er den ”klassiske“ løsning, der indbefatter etablering af varmepumpe med ekstern varmekilde (typisk spildvarme, grundvand, jordvarme, eller luftvarme).

Strategi 2 indbefatter integration af en lille varmepumpe og røggaskondensering på kraftvarmeanlægget (”røggasløsningen”). Denne løsning kan suppleres med etablering af avanceret koldt mellemlager, der giver mulighed for en vis uafhængig drift af kraftvarmeanlæg og varmepumpe. Uden et koldt mellemlager vil kraftvarmeanlæg og varmepumpe altid være i drift samtidig, og varmepumpen leder i realiteten blot til et højeffektivt kraftvarmeanlæg.

Strategi 3 indebærer integration af et mindre solvarmeanlæg, et mindre borehulslager, samt en varmepumpe, der øger solvarmeanlæggets udyttelsesgrad (”solvarmeløsningen”).

Strategi 4 indebærer skrotning af kraftvarme og etablering af stor varmepumpe med ekstern varmekilde, samt elkedel (”power-to-heat skrotningsløsningen”).

Strategi 5 indebærer skrotning af kraftvarme, etablering af større solvarmeanlæg, borehulslager, samt mindre varmepumpe, der øger solvarmeanlæggets udyttelsesgrad, samt elkedel (”solvarme-skrotningsløsningen”).

I de tilfælde hvor der indgår en ekstern varmekilde, kan varmekilden - helt eller delvist - være et indtægtsgivende kuldebehov (fjernkøling), hvilket imidlertid ikke indgår i denne analyse.
3.3 **Anlægskoncepter**

Der er på denne baggrund designet og analyseret en række anlægskoncepter, der er nærmere defineret ud fra en række implicitte vurderinger, bl.a.:

- **Levetidsforlængende løsning med mindre supplerende varmepumpe (Strategi 1)** overfor målgruppe A er analyseret med både spildvarme, jord, og luft som varmekilde. Dette giver grundlag for en komparativ vurdering af disse varmekilder ift. den ”klassiske” løsning.

- **Levetidsforlængende løsning med mindre supplerende varmepumpe (Strategi 1)** overfor målgruppe C er analyseret for spildvarme (best case) og luft (worst case) som varmekilde, hvilket vurderes at være dækkende for udfaldsrummet.

- **Levetidsforlængende løsning med supplerende solvarme og varmepumpe (Strategi 3)** er alene analyseret med udnyttelse af solvarme som intern varmekilde. Der kan naturligvis være tilfælde, hvor f.eks. spildvarme eller anden ekstern kilde er tilgængelig, men konceptet, der er genstand for analyse, er baseret på forbedret udnyttelse af solvarme som intern varmekilde.

- **Skrotningsløsning med varmepumpe og elkedel (Strategi 4)** er alene analyseret med anvendelse af spildvarme som varmekilde (best case). Det vurderes tilstrækkeligt at afprøve en højværdig varmekilde for dette koncept.

- **Skrotningsløsning med biomassekedel og supplerende varmepumpe (Strategi 7)** er alene analyseret med anvendelse af jord-varme som varmekilde (average case). Det vurderes dækkende at afprøve jord som repræsentativ varmekilde for dette koncept.
Figur 12 illustrerer hvordan de analyserede anlægskoncepter dækker mulighedsrummet ift. omstillingsstrategier og varmekilder.

Figur 12: Oversigt over modelanalysens anlægskoncepter.
Tabel 6 viser de alternative anlægsdesign, der denne baggrund indgår i analysen.
Appendiks A 2 viser principdiagrammer for disse anlæg.

<table>
<thead>
<tr>
<th>Strategi</th>
<th>Symbol</th>
<th>Målgrp</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHP-HP-WW</td>
<td>A</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel samt etablering af eldreven varmepumpe med ekstern spild-varmekilde</td>
</tr>
<tr>
<td></td>
<td>CHP-HP-GS</td>
<td>A</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel samt etablering af eldreven varmepumpe med ekstern jord-varmekilde</td>
</tr>
<tr>
<td></td>
<td>CHP-HP-AS</td>
<td>A</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel samt etablering af eldreven varmepumpe med ekstern luft-varmekilde</td>
</tr>
<tr>
<td></td>
<td>CHP-BB-HP-WW</td>
<td>C</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel, hvor der er etableret 1 MWq halmkedel, samt etablering af eldreven varmepumpe med ekstern spild-varmekilde</td>
</tr>
<tr>
<td></td>
<td>CHP-BB-HP-AS</td>
<td>C</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel, hvor der er etableret 1 MWq halmkedel, samt etablering af eldreven varmepumpe med ekstern luft-varmekilde</td>
</tr>
<tr>
<td>2</td>
<td>CHP-HP-FG</td>
<td>A</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel samt etablering af eldreven varmepumpe på intern varmekilde (røggaskondensering)</td>
</tr>
<tr>
<td></td>
<td>CHP-HP-FG-CS</td>
<td>A</td>
<td>Som CHP-HP-FG, samt etablering af koldt varmelager til lagring af røggasvarme, og dermed mulighed for forskudt drift af varmepumpe og motor</td>
</tr>
<tr>
<td>3</td>
<td>CHP-SH-HP-CS</td>
<td>A</td>
<td>Fortsat drift af eksisterende naturgasfyret kraftvarme og kedel samt etablering af mindre solvarmeanlæg, samt eldreven varmepumpe med intern varmekilde (solvarme), samt etablering af mindre borehulslager til lagring af solvarme, og dermed mulighed for forskudt drift af varmepumpe og solvarmeanlæg</td>
</tr>
<tr>
<td>4</td>
<td>HP-WW-EB</td>
<td>A</td>
<td>Skrofting af kraftvarme, etablering af stor eldreven varmepumpe med ekstern spild-varmekilde og elkedel</td>
</tr>
<tr>
<td>5</td>
<td>SH-HP-EB-CS</td>
<td>A</td>
<td>Skrofting af kraftvarme, etablering af større solvarmeanlæg, samt etablering af eldreven varmepumpe med intern varmekilde (solvarme) og elkedel, samt etablering af mindre borehulslager, og dermed mulighed for forskudt drift af varmepumpe og solvarmeanlæg</td>
</tr>
<tr>
<td>6</td>
<td>BB-HP-GS</td>
<td>A</td>
<td>Skrofting af kraftvarme, etablering af større biomassekedel samt eldreven varmepumpe med ekstern jord-varmekilde</td>
</tr>
<tr>
<td>7</td>
<td>BB-OB</td>
<td>A</td>
<td>Skrofting af kraftvarme, etablering af stor biomassekedel.</td>
</tr>
</tbody>
</table>

Tabel 6: Alternative anlægsdesigns. Se nomenklatur for symbolforklaring.
3.4 Designanalyser

For hvert af de undersøgte ny-anlæg er der gennemført en række detailanalyser. Disse detailanalyser imødekommer udvalgte analysebehov, og har samtidig bidraget til at identificere de selskabsøkonomisk optimale anlægsdesigns, der ligger til grund for den overordnede komparative rangordning i Kapitel 0.

Designanalyserne eksemplificeres nedenfor med udvalgte resultater for CHP referencen og CHP-HP-WW alternativet (den ”klassiske” løsning målgruppe A), samt for CHP-BB referencen og CHP-BB-HP-WW alternativet (den ”klassiske” løsning målgruppe C).

Designanalysen for CHP referencen viser bl.a. hvordan dækningsgraden for kraftvarmeenhed og kedel udvikler sig over planperioden. Desuden vises hvordan varmeProduktionsomkostningerne udvikler sig over planperioden.

3.4.1 CHP referencen

Figur 13 og Figur 14 viser energibalancen i hhv. 2016 og 2030 for CHP referencen.

Figur 13 viser, at kraftvarmeenheden i 2016 kun dækker knap 7% af varmegrundlaget, mens kedlen dækker resten. Dette afspejler den aktuelle situation i elmarkedet, hvor kedlen i de fleste timer er den billigste varmeProduktionsenhed.

Figur 13: CHP: 2016 energibalance (Sankey-diagram) for CHP referencen.
Figur 14 viser, at kraftvarmeenheden under den givne fremskrivning øger dækningsgraden til 56% i 2030.

Figur 14: CHP: 2030 energibalance (Sankey-diagram) for CHP referencen.

Figur 16 viser udviklingen i varmeprisen år for år. Det fremgår, at grundbeløbets bortfald fra og med 2019 fører til en stigning i varmeprisen på 17% i forhold til 2018, alt andet lige.
Figur 17 viser udviklingen i den gennemsnitlige varmepris for hhv. kraftvarmeenhed (CHP) og gasmotor (GB). Resultatet spejler udviklingen i antallet af fuldlasttimer for kraftvarmeenheden.

Figur 17: CHP: 2016-2035 årlig gennemsnitlig varmeproduktionsomkostning.
3.4.2 **CHP-HP-WW ("klassisk løsning" med spildvarme, målgruppe A)**

Figur 18 viser varmepumpens relative størrelses indflydelse på den balancerede selskabsøkonomiske varmepris.

Der er på denne baggrund anlagt et konservativt optimum for varmepumpens størrelse svarende til 50% af kraftvarmeenhedens varmeeffekt, hvilket ses at være optimum ved en selskabsøkonomisk diskonteringsrente på 15%. En lavere diskonteringsrente øger varmepumpens optimale størrelse ret markant.

Figur 19 viser betydningen af varmelagrets relative størrelse for den balancerede selskabsøkonomiske varmepris. Det fremgår, at det eksisterende varmelagers størrelse på 0,15% af varmegrundlaget fortsat er optimum for anlæggets drift. Det er på denne baggrund valgt ikke at anlægge yderligere varmelagringskapacitet ifm. etablering af den "klassiske løsning".

Balanceret selskabsøkonomisk varmepris [DKK/MWh]

![Diagram af balanceret selskabsøkonomisk varmepris](image)

Figur 20 viser energibalancen i 2016 for CHP-HP-WW. Det fremgår, at etablering af supplerende varmepumpe med ekstern varmekilde reducerer kraftvarmeenhedens dækningsgrad til blot omkring 1% af varmegrundlaget.

Figur 21 viser dækningsgradens udvikling år for år. Det fremgår, at varmepumpen opnår en jævn dækningsgrad på 60-65% i perioden.

Figur 20: CHP-HP-WW: 2016 energibalance (Sankey-diagram) for CHP-HP-WW.

3.4.3 **CHP-BB referencen (frivolgsværk) og CHP-BB-HP-WW**

Figur 22 og Figur 23 viser dækningsgradens udvikling år for år for hhv. CHP-BB referencen (frivolgsværk, målgruppe C) og CHP-BB-HP-WW.

Figur 23 viser hvordan biomassekedlen, der jf. lovgivning om frivolgsværker er begrænset til 1 MW, placerer sig i grundlast med 8500 driftstimer årligt i alle år både uden og med varmepumpe. En mindre supplerende varmepumpe med ekstern varmeoptag opnår 7000 driftstimer årligt uden at dette går ud over biomassekedlens gode økonomi. Varmepumpen fortrænger blot yderligere naturgas-baseret varmeproduktion.

Dette detailresultat understøtter det komparative resultat nedenfor, der viser, at det er rentabelt at etablere en mindre supplerende varmepumpe på frivolgsværk i kombination med etablering af mindre biomassekedel (målgruppe C).

![Figur 22: CHP-BB: 2016-2035 dækningsgrad for kraftvarmeenhed (CHP), gaskedel (GB), samt biomassekedel (BB).](image-url)
3.4.4 Fuldlasttimer for varmepumpen

Figur 24 viser det balancerede antal fuldlasttimer for varmepumpen i de anlægskoncepter, hvori ingår varmepumper. Under gældende rammebetingelser vil et højt antal fuldlasttimer indikere en relativ god økonomi, mens et lavt antal fuldlasttimer vil indikere en relativ dårlig økonomi. Et lavt antal fuldlasttimer kan også indikere et uhensigtsmæssigt anlægsdesign.

Det fremgår, at den ”klassiske” levetidsforlængende løsning med supplerende varmepumpe (CHP-HP) opnår fra 5300-7900 fuldlasttimer afhængig af varmekilde, lavest for luft-varme. For fritvalgsværker varierer antallet af fuldlasttimer fra 6300-6800. ”Røggasløsningen” (CHP-HP-FG-CS) opererer med 3350 fuldlasttimer, mens Power-To-Heat skrotningsløsningen (HP-EB) opererer med 6050 fuldlasttimer.

Varmepumper i tilknytning til solvarme og borehulslagre opnår et relativt lavt antal fuldlasttimer (800-1650). Varmepumpe med ekstern varmeoptag i kombination med større biomassekedel opnår tilsvarende et lavt antal fuldlasttimer (1300).

Et højt antal fuldlasttimer indikerer en ”flad” driftsprofil for varmepumpen (grundlast, always-on), og afspejler et anlægsdesign, hvor selve varmepumpen er relativt ufølsom overfor variationer i elmarkedet, hvilket statistisk typisk korrelerer med vindproduktionen. Dette skisma, der bevirket at rentable varmepumper opererer i grundlast med et meget stort antal fuldlasttimer og er relativt ufølsomme overfor elmarkedets signaler om behov for indregulering af vindkraft, har været en central udfordring i udviklingen af vindvenlige varmepumper, og har bl.a. ført til

Figur 24: Balanceret antal fuldlasttimer for varmepumpe i anlægskoncepter med varmepumpe.
frehævning af designløsninger såsom "røggasløsningen" (CHP-HP-FG m/u CS), hvor varmepumpens drift er begrænset af kraftvarmeenhedens drift, hvilket medvirker til dynamisk drift [12]. Det er også f.eks. blevet foreslået at begrense afgiftsgodtgørelsen i ft. antallet af fuldlasttimer for at stimulere dynamisk varmepumpedrift. Ekstrem prisspredning i elmarkedet eller dynamiske elafgifter vil kunne rykke ved denne præmis.

Designstudier har tidligere peget på at kombinationen af varmepumpe og elkedel bidrager til mere dynamisk drift [12].
3.4.5 **CHP-HP tekniske-CO₂ emissioner**

Analysen opgør tekniske CO₂ emissioner i et system perspektiv, dvs. under hensyntagen til både lokale emissioner og inducerede emissioner som følge af køb og salg af elektricitet. Metoden for beregning af inducerede emissioner baserer sig på individuelle elproducenteres kortsigtede marginale produktionsomkostninger i det nordiske og nordeuropæiske elsystem.

Figur 25 viser et eksempel for den ”klassiske løsning” (CHP-HP) på elproduktionens og –forbrugets inddeling i forhold til marginale elproducenter (kul, gas, vind/sol/vand/kernekraft).

Det fremgår at CHP-HP’s elproduktion (figuren til venstre) i planperiodens begyndelse overvejende fortrænger kulbaseret elproduktion, men fra omkring midt i planperioden overvejende fortrænger naturgashaseret elproduktion. Dette skyldes antagelser om el- og brændselsprisens udvikling.

Det ses endvidere, at CHP-HP’s elforbrug (figuren til højre) i overvejende grad leveres af kulbaseret el, mens andelen af varmepumpens årlige elforbrug der leveres af CO₂ neutral elforsyning (vind, sol, vandkraft, kernekraft) varierer fra 7% og 18% over planperioden.

4 Med ”tekniske emissioner” skal forstås, at der økonomisk set reelt er tale om emissioner, der allerede er internaliserede i elmarkedet via CO₂ kvoter.
3.5 **Komparativ analyse – rangordning af anlægskoncepter**

Den komparative analyse præsenteres med udgangspunkt i følgende nøgleresultater:

1. Fossilt brændselsforbrug
2. Tekniske CO2 emissioner
3. Vindvennyhed
4. Vindvolumen - forbrug
5. Vindvolumen - produktion
6. Selskabsøkonomi
3.5.1 **Fossilt brændselsforbrug**

Figur 26 viser fossilt brændselsforbrug i et system perspektiv, dvs. under hensyntagen til både lokalt forbrug af naturgas og indirekte forbrug som følge af køb og salg af elektricitet.

Analysen viser at:

1. Alle løsninger, bortset fra solvarme-skrotningsløsningen (SH-HP-EB-CS), fører til reduktion i det fossile brændselsforbrug ift. CHP referencen.
2. Skrotningsløsningen med biomassekedel m/u varmepumpe (BB-OB og BB-HP-GS) fører til en reduktion på 98-100%.
3. For målgruppe A giver den "klassiske løsning" (Strategi 1) en reduktion på 15-25% (højest ved spild-varme, lavest ved luft-varme).
4. For målgruppe C fører etablering af mindre biomassekedel til en reduktion på godt 25%. En efterfølgende etablering af den ”klassiske løsning” (Strategi 1) fører til en samlet reduktion på 40-45% (højest ved spild-varme, lavest ved luft-varme).
5. Power-To-Heat skrotningsløsningen med spild-varmepumpe og elkedel (HP-WW-EB) fører til en reduktion på knap 35%.
6. Røggasløsningen (CHP-HP-FG m/u CS) giver en reduktion på knap 25%.

Figur 26: Balanceret årligt fossilt brændselsforbrug.
3.5.2 Tekniske CO2 emissioner

Figur 27 viser de balancerede årlige tekniske CO2 emissioner i et system perspektiv, dvs. under hensyntagen til både lokalt emissioner fra forbrug af naturgas og inducerede emissioner som følge af køb og salg af elektricitet.

Analysen viser at:

1. Den “klassiske” løsning (CHP-HP) fører til en marginal CO2-forøgelse på 1-3% afhængig af varmekilde. Dette gælder både i ft. målgruppe A og C. Dette er den kombinerede konsekvens af lavere elproduktion og dermed reduceret fortrængning af kulbaseret elproduktion, og varmepumpens inducerede emissioner som følge af dens elforbrug.
2. Power-To-Heat skrotningsløsningen (HP-WW-EB) giver en CO2-forøgelse på 7%.
3. Røggaslösningen (CHP-HP-FG m/u CS) giver en markant CO2-reduktion på godt 70%, hvilket skyldes den resulterende markante forøgelse af produktionen på kraftvarmeenheden, hvilket fører til øget fortrængning af kulbaseret elproduktion.
4. Biomasse skrotningsløsningen med jord-varmepumpe (BB-HP-GS) giver ligesom den rene biomassekedel en CO2 reduktion på godt 100%. Dette skyldes dels at varmepumpen driftstid er begrænset; godt 1300 fuldlasttimer i 2016 giver f.eks. anledning til et elforbrug på godt 1500 MWh. Dette elforbrug er overvejende CO2-neutrat, da forbruget overvejende optræder i timer, hvor elspot er lavere end den marginale produktionspris for den billigste fossile elproducer (typisk kulkraft). De resulterende balancerede tekniske CO2-emissioner er på blot 9 ton årligt, mens det er på godt 5,000 ton for CHP.

Figur 27: Balancerede årlige tekniske CO2 emissioner i et system perspektiv.
3.5.3 **Vindvenlighed**

Blarke [13] har introduceret et system-specifikt nøgletal populært kaldet vindvenlighedskoefficienten (the intermittency-friendliness coefficient R_c), der afspiller hvordan en producents eller elforbrugers nettoudveksling med elnettet harmonerer med elnettets nettoelbehov, defineret som diskontinuerlig elproduktion minus det almindelige elbehov (residualbehov).

Vindvenlighedskoefficienten R_c har til formål at evaluere den marginale ”godhed” af værkets respons til variationer i nettoelbehov, og resultatet spænder fra -1.0 to 1.0 for hvert driftsår (eller periode), hvor 1 er bedst.

R_c er defineret som den statistiske korrelation mellem værkets nettoeludveksling med nettet e, og nettets nettoelbehov d.

$$R_c = \frac{\sum (e - e_m)(d - d_m)}{\sqrt{\sum (e - e_m)^2 \sum (d - d_m)^2}}$$

hvor m refererer til middelværdien.

Figur 28 viser den balancerede årlige vindvenlighed.

Analysen viser at:

1. Røggasløsningen (CHP-HP-FG m/u CS) opnår som den eneste løsning højere vindvenlighed end CHP. Etablering af et koldt mellemlager (CS), der tillader uafhængig drift af kraftvarmeanlæg og varmepumpe, fører til den mest markante forøgelse.
2. Den ”klassiske” løsning (CHP-HP) reducerer anlæggets vindvenlighed marginalt, hvilket er den kombinerede konsekvens af lavere elproduktion og varmepumpens flade elforbrugsprofil som følge af et højt antal fuldlasttimer.
Power-to-Heat skrotningsløsningen (HP-EB) rummer en potentiel driftsmæssig fleksibilitet, der knytter sig til produktionsenhedernes kapacitet.

Figuur 29 viser hvilken betydning varmelagerets og varmepumpens kapacitet har på HP-EB skrotningsløsningens vindvenlighed. Det ses, at det er muligt at øge HP-EB anlæggets vindvenlighed markant ved at etablere kapaciteter, der er større end det selskabsøkonomisk optimale design anvendt i den komparative analyse.

Højeste vindvenlighed opnåes ved etablering af en varmepumpe, der er 50% større end det der er selskabsøkonomisk optimalt, i kombination med etablering af et varmelager, der er 200% større end i udgangspunktet. Derved opnåes en vindvenlighedskoefficient på 0,37, hvilket er på niveau med CHP referencen.

Dette resultat indikerer, at Power-to-Heat skrotningsløsningen kan opnå en systemteknisk betydning, der er sammenligneligt med kraftvarmeanlæggets betydning i dag, men at dette aktuelle vil indebære markante meromkostninger iom. anlæggets etablering.
Figur 29: Designvariationer for power-to-heat skrotningsløsningen med varmepumpe og elkedel og betydningen for vindvenligheden. Beregningen er lavet på grundlag af et ”frozen system” scenario, hvilket betyder at referencens værdi afviger lidt fra værdien i Figur 28.
3.5.4 Vindvolumen - forbrug

Blarke [13] har introduceret et system-specifikt nøgletal kaldet vindvolumen-forbrug (intermittency-volume consumption), der afspejler i hvilket omfang et anlægs elforbrug er placeret i perioder, hvor spotprisen er lavere end den marginale produktionsomkostning for den billigste fossile brøndsele producent i elsystemet (typisk central kulkraft).

Vindvolumen-forbrug indikerer i hvor høj grad anlægget aftager elektricitet, når vindproduktionen er på sit højeste.

Figur 30 viser det balancerede årlige vindvolumen-forbrug.

Analysen viser at:

2. Power-To-Heat skrotningsløsningen (HP-EB) leverer det i særklasse næststørste vindvolumen, der er 2-3 gange større end for den "klassiske" løsning (CHP-HP).

3. Den "klassiske" løsning (CHP-HP) leverer et markant vindvolumen, højest ved spild-varme, lavest ved luft-varme, hvilket skyldes at en højværdig varmekilde fører til flere driftstimer på varmepumpen.

4. Røggasløsningen med koldt mellemlager (CHP-HP-FG-CS) fører til et lille marginaelt vindvolumen, hvilket skyldes at varmepumpen uden samtidig drift af kraftvarmeenheden opnår relativt få driftstimer.

Figur 30: Balanceret årlig vindvolumen i anlæggets elforbrug.
3.5.5 **Vindvolumen – produktion**

Vindvolumen-produktion (intermittency-volume production) afspærler i hvilket omfang et værks elproduktion er placeret i perioder, hvor spotprisen er højere end den marginale produktionsomkostning for den billigste fossile brændselsproducent i elsystemet (typisk central kullkraft).

Vindvolumen-produktion indikerer i hvor høj grad anlægget bidrager med elproduktion, når vindproduktionen er på sit laveste.

Figur 31 viser den balancerede årlige vindvolumen-produktion.

Analysen viser at:

1. **Røggasløsningen (CHP-HP-FG m/u CS)** næsten fordobler CHP-anlæggets elproduktion i perioder, hvor fossil elproduktion er marginal. Dette afspærler, at en røggaskondenserende varmepumpe reducerer kraftvarmeanlæggets marginale produktionsomkostning, hvilket fører til en markant stigning i kraftvarmeanlæggets driftstimer.

2. Den ”klassiske” løsning (CHP-HP) reducerer vindvolumen-produktion med 30-40%, højeste reduktion med spild-varmekilde, hvilket skyldes at en højværdig varmekilde fører til flere driftstimer på varmepumpen, og dermed færre driftstimer på kraftvarmeanlægget.

3. Alle skrotningsløsninger reducerer vindvolumen-produktion til nul.

Balanceret årlig non-vind-volumen (elproduktion)

![Balanceret årlig non-vind-volumen i anlæggets elproduktion.](image)

Figur 31: Balanceret årlig non-vindvolumen i anlæggets elproduktion.
3.5.6 **Selskabsøkonomi**

Figur 32 viser den balancerede selskabsøkonomiske varmeproduktionspris uden anlægstilskud ved en selskabsøkonomisk diskonteringsrente på 7%.

Analysen viser at:

1. Den rene biomasseløsning (BB-OB) er 50% billigere end CHP.
2. Skrotningsløsningen med biomasse og varmepumpe (BB-HP) er dyrere end den rene biomasseløsning (BB-OB).
3. Fritvalgs-referencen (CHP-BB) er 13% billigere end CHP.
4. Fritvalgsløsningen med varmepumpe (CHP-BB-HP) er 15-25% billigere end CHP, og dermed billigere end fritvalgs-referencen.
5. Den ”klassiske” løsning (CHP-HP) giver en selskabsøkonomisk besparelse på 5-15% afhængig af varmekilde.
6. Power-To-Heat skrotningsløsningen (HP-EB) er ligeværdig med CHP.
7. Røggasløsningen (CHP-HP-FG m/u CS) er ligeværdig med CHP.
8. Solvarme-skrotningsløsningen (SH-HP-EB-CS) er 38% dyrere end CHP.

Figur 32: Balanceret selskabsøkonomisk varmepris [DKK/MWh] før evt. tilskud ved en selskabsøkonomisk diskonteringsrente på 7%.
3.6 Selskabsøkonomisk tilskudsbehov

3.6.1 Målgruppe A

Figur 33 og Figur 34 viser - for anlæg relevante for målgruppe A - den balancerede selskabsøkonomiske varmepris som funktion af tilskudsgraden ved en selskabsøkonomisk diskonteringsrente på 7% for hhv. 2016-2035, samt for et ”Frozen System” scenarie, hvor el- og brændselspriserne er fastholdt på 2016-niveau, og hvor grundbeløbet indgår. Der er samtidig foretaget tilsvarende analyser med en selskabsøkonomisk diskonteringsrente på 15% (ikke vist her).

Kombinationen af to forudsætningsscenarier ("Projected System 2016-2035" og "Frozen System 2016") og to selskabsøkonomiske diskonteringsrenter (hhv. 7% og 15%) vurderes at etablere et spænd for det man må forvente vil være resultatet af aktuelle feasibility studier.

Analysen viser at:

1. Referenceberegningen, der er baseret på ”Projected System 2016-2035” og en selskabsøkonomisk diskonteringsrente på 7% , viser INTET TILSKUDSBEHOV for hverken den ”klassiske” løsning (CHP-HP), ”ræggasløsningen” (CHP-HP-FG), eller ”Power-To-Heat skrotningsløsningen” (HP-EB) ift. CHP referencen.
2. Følsomhedsberegninger med ”Frozen System 2016” og en diskonteringsrenten på 15% viser, at den ”klassiske” løsning (CHP-HP) er rentabel uden tilskud uanset varmekilde.
3. En følsomhedsberegning, der er baseret på ”Frozen System 2016” og en selskabsøkonomisk diskonteringsrente på 7% , viser at Power-To-Heat skrotningsløsningen og ”ræggasløsningen” begge vil have et tilskudsbehov på 40%.
4. Ingen varmepumpeløsning er rentabel overfor etablering af ny biomassekedel uanset tilskudssats.
Figur 33: Målgruppe A: Balanceret selskabsøkonomisk varmepris [DKK/MWh] som funktion af tilskudsgrad ved en selskabsøkonomisk diskonteringsrente på 7%.

Figur 34: Målgruppe A: Følsomhedsanalyse FROZEN SYSTEM (2016), der viser den balanceerde selskabsøkonomiske varmepris [DKK/MWh] som funktion af tilskudsgrad ved en selskabsøkonomisk diskonteringsrente på 7%.
3.6.2 Målgruppe C (Fritvalgsværker)

Figur 35 og Figur 36 viser tilsvarende for anlæg relevante for målgruppe C.

Analysen viser at:

1. Referenceberegningen, der er baseret på ”Projected System 2016-2035” og en selskabsøkonomisk diskonteringsrente på 7%, viser INTEL TILSKUDBEHOV for den ”klassiske” varmepumpeløsning (CHP-HP).
Figur 35: Målgruppe C: Balanceret selskabsoekonomisk varmepris [DKK/MWh] som funktion af tilskudssgrad ved en selskabsoekonomisk diskonteringsrente på 7%.

Figur 36: Målgruppe C: Balanceret selskabsoekonomisk varmepris [DKK/MWh] som funktion af tilskudssgrad ved en selskabsoekonomisk diskonteringsrente på 7%.
4. **Konklusion og diskussion**

Denne rapport præsenterer metode, forudsætningsgrundlag, og udvalgte resultater fra analyseprocessen, der har ledt til forberedelse af demonstrationsprogram for varmepumper.

4.1 **Karakteristik af målgruppe**

En teknisk og økonomisk karakteristik har resulteret i en opdeling og rangordning af målgruppen ift. værkstypologi, varmegrundlag, og aktuelle fjernvarmepriser. Dette er dokumenteret i Kapitel 2.

4.2 **Løsningsrum: Levetidsforlængelse eller skroting, ekstern eller intern varmekilde?**

Tabel 7 viser en skematik for det løsningsrum, der tegner sig ift. omstilling af decentrale naturgasfyrede kraftvarmeanlæg. Tabellen viser, at der kan opereres med to overordnede omstillingsstrategier, der involverer varmepumper: levetidsforlængelse eller skroting. Dertil skelnes mellem anvendelse af eksterne (spildvarme, grundvand, jord, luft, fjernkøling) og interne (røggas, solvarme) varmekilder.

Det fremgår at varmepumpens tilnærmelsesvis selskabsøkonomisk optimale varmeproduktionskapacitet er tæt forbundet med det valgte anlægskoncept og varierer fra 20% til 125% af kraftvarmeenhedens varmeproduktionskapacitet.

Der bør desuden indgå overvejelser om evt. etablering af elkedel og yderligere termisk lagring.

<table>
<thead>
<tr>
<th></th>
<th>Levetidsforlængelse</th>
<th>Skrotnings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ekstern</td>
<td>Intern</td>
<td>Ekstern</td>
</tr>
<tr>
<td>HP kapacitet</td>
<td>50-75%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Evt anlæg</td>
<td>Elkedel</td>
<td>Koldt mellem-lager</td>
<td>Elkedel</td>
</tr>
<tr>
<td>Økonomi</td>
<td>***</td>
<td>**</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabel 7: Skematisk oversigt over løsningsrum med angivelse af varmepumpens designkapacitet ift. kraftvarmeenhedens varmeproduktionskapacitet.
4.3 **Selskabsøkonomi og støtteneiveau**

Referenceberegningen - der er baseret på et "Projected System 2016-2035" scenarie og en selskabsøkonomisk diskonteringsrente på 7%, viser INET TILSKUDSBEHOV for hverken den "klassiske" løsning (CHP-HP), "røggasløsningen" (CHP-HP-FG), eller "Power-To-Heat skrotningsløsningen" (HP-EB) ift. CHP referencen.

For fritvalgsværker, der allerede har etableret en lille biomassekedel, viser referenceberegningen tilsvarende INET TILSKUDSBEHOV for den "klassiske" løsning (CHP-HP)

For så vidt angår den "klassiske" løsning (CHP-HP) viser analysen ikke overraskende, at jo bedre varmekilde, des do bedre selskabsøkonomi. Men selv en luft-baseret varmepumpe resulterer i en lavere selskabsøkonomisk varmepris i referenceberegningen.

Analysen peger samtidig på at den "klassiske” løsning er billigst, mens "røggasløsningen" og "power-to-heat skrotningsløsningen" er dyrere. Solvarmeløsningerne, uanset om det er i forbindelse med levetidsforlængelse eller skroting, er dyrest.

Den "klassiske” løsnings gode rentabilitet er særlig følsom overfor at kraftvarmeenhedens dækningsgrad i analysen stiger frem mod 2030, samtidig med at omkostninger til levetidsforlængelse antages at være lave. Levetidsforlængelse kan i nogle tilfælde kræve signifikante re-investeringer, hvilket naturligvis vil ændre denne præmis.

En anden fordel for den "klassiske” løsning er, at man i analysen mister 3 års grundbeløb (2016-2018) ved at skrotte kraftvarmeenheneden.

Power-to-Heat skrotningsløsningens rentabilitet er særlig følsom overfor at analysen ikke medtager evt. ekstraordinære omkostninger til skroting af kraftvarmeanlæg, f.eks. evt. bod til naturgasselskabet.

Følsomhedsanalyser, der undersøger betydningen af at forudsætninger fastfryses på 2016 niveau, viser at der opstår et tilskudsbehov på op til 40% for både "røggasløsningen" (CHP-HP-FG) og "Power-To-Heat skrotningsløsningen" (HP-EB) ift. CHP referencen, mens den "klassiske” (CHP-HP) løsning også her er rentabel uden tilskud uanset varmekilde.

Det anbefales:

1. At fremme løsninger, der opererer med et lavt støtteneiveau.
2. At fremme løsninger, der opererer med levetidsforlængelse af kraftvarmeenhed fremfor skroting af denne.
3. At fremme den "klassiske” løsning med levetidsforlængelse af kraftvarmeenhed og etablering af mindre varmepumpe med ekstern varmeoptag.
4.4 **Vindvenlige varmepumper**

Når man sammenholder udbygningen med vindkraft og solceller med udbygningen med Power-To-Heat teknologi i Energistyrelsens 2050 vindscenario, kan det overraske, at man skulle kunne udtrykke forventning om at varmepumper og elkedler i fjernvarmen er en væsentlig nøgle til indregulering af diskontinuerlige vedvarende elproducenter, når varmepumpers kapacitet i et sådant scenario udgør mindre end 2% af den diskontinuerlige kapacitet, og elkedler slet ikke indregnes i 2050.

Analysen opererer med 3 forskellige nøgletal, der bidrager til at afdække hvilken betydning etablering af varmepumper og elkedler; vindvenlighed, samt hhv. vindvolumen-forbrug og -produktion.

Analysen viser bl.a. hvordan en lille røggaskondenserende varmepumpe (CHP-HP-FG m/u CS) markant forbedrer et kraftvarmeanlægs vindvenlighedscoefficient til trods for varmepumpens begrænsede installerede el-effekt, der svarer til omkring 7% af motorens elproduktionskapacitet. CHP-HP-FG-CS, der giver mulighed for uafhængig drift af kraftvarmeenhed og varmepumpe, leverer analysens højeste vindvenlighed, højeste vindvolumen-produktion, omend et minimalt vindvolumen-forbrug. Denne løsning er et yderst vindvenligt alternativ til CHP referencen, men leverer et lavere vindvolumen-forbrug end f.eks. skrotningsløsningen HP-EB.

Analyserne afspejler også hvordan elforbruget i den "klassiske" løsning (CHP-HP) uanset varmekilde, på grund af varmepumpens lave marginale produktionsomkostning, ikke er særlig følsom overfor variationer i spotprisen, og følgelig opereres i grundlast med et højt antal fuldlasttimer. Dette fører til en mere "flad" nettoudveksling af elektricitet med det omgivende energisystem, hvilket resulterer i den fundne reduktion i denne løsnings vindvenlighed. Baggrundsanalyser, som det dog er valgt ikke at medtage i denne rapport, peget dog på, at hvis der samtidig etableres en elkedel (CHP-HP-EB) kan det foret en markant forøgelse af anlæggets vindvenlighed og et forøget vindvolumen [12].

Det anbefales:

4. At fremme løsninger, der kombinerer varmepumpe og elkedel
5. At fremme røggasloveningen CHP-HP-FG m/u CS
4.5 Fra kraftvarme til kraft-til-varme

Analysen berører perspektiverne i skrotningsløsningen HP-EB, der ikke alene vil kunne levere et markant vindvolumen, men også på sigt vil kunne føre til opretholdelse af kraftvarmens vindvenlighed. Aktuelt fører et selskabsøkonomisk optimalt design til lavere vindvenlighed, men analysens designstudier viser hvordan man med en (fordyrende) overdimensioneret varmepumpe og overdimensioneret varmelager opnår en vindvenlighed, der er på niveau med røggasløsningen (CHP-HP-FG m/u CS), og som i modsætning til røggasløsningen samtidig leverer et markant vindvolumen.

Det anbefales:

6. At søge Power-To-Heat skrotningsløsningen HP-EB afprøvet.
Appendiks

A 1. Forudsætninger og metode

A 1.1 Generel modelbeskrivelse

Modelanalysen er gennemført ved brug af COMPOSE, der er en parametrisk mixed-integer lineær programmeringsmodel, der giver mulighed for at designe og evaluere energiprojekter og virkemidler i et givent energi-økonomisk system. Energisystemet er karakteriseret ved en fremskrivning af elforbrug, diskontinuerlig elproduktion, samt en given sammensætning af marginale elproducercenter.

COMPOSE foretager en integreret projektvurdering og energisystemanalyse, der afdækker selskabsøkonomiske, samfundsøkonomiske og statsfinansielle effekter med udgangspunkt i en detaljeret og virkelighedsnær driftsøkonomisk optimering.

I nærværende analyse er der valgt en optimeringshorizon på 1 måned. For hvert anlæg, for hver optimeringshorizont genererer COMPOSE et MILP problem, der beskriver anlæggets driftsvilkår, som derefter løses for at minimere de selskabsøkonomiske driftsomkostninger. Således genereres og løses for hvert år i planperioden 12 MILP modeller, dvs. i alt 240 MILP modeller på anlæg for en 20-årig planperiode i alt 3360 modeller for de 14 analyserede anlæg.

COMPOSE vurdering af tekniske CO2 emissioner, fossil brændselsanvendelse, vindvenlighed og -volumen i et systemperspektiv baserer sig på en marginal repræsentation af energisystemet.

A 1.2 Overordnede forudsætninger og metode

Alle beløb er angivet i faste 2015-priser ekskl. moms.

Alle anlæg er driftsoptimeret ift. spotmarkedet, ikke reguleringsmarkedet. Det blev ifm. ”Drejebog til store varmeaepumper” vist at indtjeningspotentiallet for systemtjenester i reguleringsmarkedet er yderst begrænset og svindende, og ingen mærkbar betydning har for et anlægs rentabilitet [14]. Der ses på denne baggrund bort fra indtægtstmuligheder i dette marked.

Alle anlæg modelleres i drift fra starten af 2016 til udgangen af 2035, en planperiode på 20 år. Levetiden for eksisterende anlæg samt nye anlæg antages at være 20 år med de givne D&V omkostninger, dog 30 år for solvarmeanlæg og varmelagre. Investeringer afskrives lineært over planperioden.

Evt. omkostninger til levetidsforlængelse af eksisterende anlæg, udover de fastsatte variable D&V omkostninger, indgår ikke.

Evt. omkostninger eller indtægter ifm. skrotning af anlægsenheder indgår ikke.

Der opereres med to selskabsøkonomiske forrentningskrav på hhv. 7 % og 15 % realt. Et selskabsøkonomisk forrentningskrav på 7 % (modsvarende 11 års
tilbagebetalingstid) reflekterer et meget lavere krav end i erhvervslivet generelt, mens et forrentningskrav på 15 % (modsvarende 6 års) reflekterer et tilsvarende end lidt lavere krav end i erhvervslivet generelt.

Et forrentningskrav på 7 % realt reflekterer, at fjernvarmeselskaber har en lang tidshorisont for planlagte investeringer, har adgang til kommunal garantistillelse, samt har adgang til favorabel finansiering hos bl.a. Kommunekredit, hvor rentesatsen aktuelt er på et historisk lavt niveau. Desuden er det formuleret som et minimumskrav til ansøgningen, at projektet ikke må være forbundet med ekstraordinære risici, hvilket yderligere vil reducere fjernvarmeselskabets rentabilitetskrav.

Tabel 8 viser analysens generelle forudsætninger.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samfundsøkonomisk diskonteringsrente</td>
<td>4 %</td>
</tr>
<tr>
<td>Selskabsøkonomisk diskonteringsrente</td>
<td>7 % / 15 %</td>
</tr>
<tr>
<td>Planperiode</td>
<td>20 år</td>
</tr>
</tbody>
</table>

A 1.3 Varmegrundlag

Alle anlæg er skaleret forsyningen af et model fjernvarmenet med 1200 forbrugere og et varmegrundlag inkl. nettab på 37,5 GWh/år. Det årlige varmegrundlag antages at være konstant over planperioden. For hvert år er varmegrundlaget opdelt i et timebasert temperaturafhængigt rumvarmebehov (følger temperaturfordelingen i et dansk referenceår (DRY)) [15], samt et temperatur-u-afhængigt varmtvandsforbrug og nettab (Figur 37).
A 1.4 Teknisk-økonomiske anlægsforudsætninger

Tabel 9 viser de centrale teknisk-økonomiske forudsætninger for de enkelte anlægskomponenter, der indgår i analysen.

Forudsætningerne er baseret på en aktuel opdateret vurdering og kan afvige fra Energistyrelsens teknologikatalog [16].

Figur 37: Varmegrundlag.

<table>
<thead>
<tr>
<th>Varmebehov (MWh)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing Varmegrundlag](image)

- **Brugsvand og nettab**
- **Rumvarmeforbrug (DRY)**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftvarme- enhed</td>
<td>6 MWq, η-el: 40%, η-varme: 48%, driftes kontinuer 50%-100% kapacitet</td>
<td>-</td>
<td>67,5 DKK/MWh-el</td>
<td>75</td>
<td>Naturgas E-formel</td>
</tr>
<tr>
<td>Gaskedel</td>
<td>20 MWq, η-varme: 95%, driftes kontinuer 10%-100% kapacitet.</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>Naturgas, elpatronordning en</td>
</tr>
<tr>
<td>Varmelager</td>
<td>1200 m3 (80°C frem / 40°C retur) varmetabsberegn ing inkluderet</td>
<td>1 mio. per 1000 m3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halmkedel</td>
<td>1-10 MWq, η-varme for 1 MW: 95%, η-varme for 10 MW, 108%, driftes kontinuer 10%-100% kapacitet</td>
<td>6 mio. per MW for 1 MW, 3,5 mio. per MW for større anlæg</td>
<td>30</td>
<td>25</td>
<td>Halm</td>
</tr>
<tr>
<td>Affaldsforbrændings- anlæg/industriel spildvarme</td>
<td>Sæsonbestemt køb af varme til 280 DKK/MWh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evt. brøndselssforbru g indgår ikke, alene varmekøb</td>
</tr>
<tr>
<td>Eldreven varme pumpe</td>
<td>Variabel kapacitet og COP afhængig af varmekilde, driftes kontinuer 25%-100% kapacitet</td>
<td>6 mio. per MW</td>
<td>20</td>
<td>25</td>
<td>Elspot, almindelig elafgift</td>
</tr>
<tr>
<td>Elkedel</td>
<td>Variabel kapacitet, driftes kontinuer 1%-100% kapacitet</td>
<td>0,75 mio. per MW</td>
<td>2</td>
<td>5</td>
<td>Elspot, elpatronordning</td>
</tr>
<tr>
<td>Koldt varmelager, borehulslager</td>
<td>3000 m3 (10°C frem, 30°C retur), uden varmetab</td>
<td>1 mio. per 1000 m3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solvarmeanlæg</td>
<td>5-10000 m2</td>
<td>2 mio. per 1000 m2</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabel 9: Design parametre for analysens anlægsprocesser.
Variable drifts- og vedligeholdelsesomkostninger (var. D&V) er baseret på middelværdier fra Energistyrelsens teknologikatalog omregnet til specifik enhedspris [16].

Figur 38 viser timespredningen for effekt og COP ved anvendelse af hhv. luft og jordvarmepumpe, samt timespredning for direkte produktion og restproduktion, der kan udnyttes af varmepumpen, på solvarme anlæg.

<table>
<thead>
<tr>
<th>Anlægskomponent</th>
<th>Varmekilde</th>
<th>Uvægtet SCOP</th>
<th>Timeprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eldreven varmepumpe</td>
<td>Spildvarme</td>
<td>3</td>
<td>Konstant</td>
</tr>
<tr>
<td>Eldreven varmepumpe</td>
<td>Luftvarme</td>
<td>3</td>
<td>Jf. Figur 38 øverst</td>
</tr>
<tr>
<td>Eldreven varmepumpe</td>
<td>Jordarme</td>
<td>3</td>
<td>Jf. Figur 38 midt</td>
</tr>
<tr>
<td>Eldreven varmepumpe</td>
<td>Røggas</td>
<td>3,7</td>
<td>Konstant</td>
</tr>
</tbody>
</table>

Tabel 10: SCOP design parametre el dreven varmepumpe.
Luft som varmekilde
Jordvarme som varmekilde
Solvarme samt restvarme

Figur 38: Timespredning i hhv. luft og jord som varmekilde. Øverst til venstre: Luft COP; Øverst til højre: Luft effekt; Midt til venstre: Jord COP; Midt til højre: Jord effekt.
A 1.5 Samfundsøkonomiske brændselspriser samt CO2 kvotepris

Samfundsøkonomiske brændselspriser anvendes som selskabsøkonomiske basispriser ekskl. afgifter.

CO2 kvoteprisen anvendes som selskabsøkonomisk basispris for værdien af værkernes CO2 kvoter.

Figur 39: Fremskrivning af samfundsøkonomiske brændselspriser an værk samt CO2.
A 1.6 Energisystemet

De systemanalytiske resultater (fossilt brændselsforbrug, CO2, vindvenlighed, vindvolumen) er baseret på antagelser om udbygning med hav- og landvind, solceller, elforbrug, samt marginale elproducenter.

Fremskrivningen af udbygningen med hav- og landvind og solceller, samt elforbrug, er baseret på Energinet.dk's opdaterede analyseforudsætninger 2014-2035 [18], der lægger sig op ad baggrundsnote om ”El og fjernvarme” fra Energistyrelsens basisfremskrivning 2014 [19], samt Energistyrelsens vindscenarie, hvor måltal for 2035 og 2050 anvendes [20].

Figur 40 viser resultatet af denne fremskrivning for DK1 og DK2.

Figur 40: Fremskrivning af elbehov, samt udbygning med diskontinuerlige energikilder (vindkraft og solceller) for DK1 og DK2 [18, 20].

Systemanalyserne er alene gennemført for DK1. Det er efterprøvet at resultater om driftskønomeni/tilskudskønomeni er fuldt gældende for DK2. Systemresultater er imidlertid absolut set bedre i DK2, da elspot i DK1 har oplevet et stort fald i vindforbrug-korrelation.
Figur 41: Timespredning i diskontinuerlig elproduktion, elbehov, samt elmarkeder. Øverst til venstre: havvind; Øverst til højre: landvind; Midt til venstre: nettoelforbrug DK1; Midt til højre: nettoelforbrug DK2; Nederst til venstre: Elspot DK1; Nederst til højre: Elspot DK2;solceller.
Figur 42 viser fremskrivningen af marginale elproduktionsomkostninger for analysens 3 marginale elproducenter: vind, kul, og gas.

Figur 42: Fremskrivning af marginal elproduktionsomkostning for marginale elproducenter.
A 1.7 **Samfundsøkonomisk elspot, nettariffer, PSO**

Den uvægtede samfundsøkonomiske elspotpris anvendes som selskabsøkonomisk basispris for værdien af solgt elproduktion.

Den uvægtede samfundsøkonomiske elspotpris plus net- og systemtarif, distributionstarif, samt PSO tarif, anvendes som selskabsøkonomisk basispris for køb af elektricitet ekskl. afgifter.

Fremskrivning af elspot middelpris er baseret på Energistyrelsens seneste samfundsøkonomiske fremskrivning af uvægtet elspot plus aktuel net- og systemtarif (69 DKK/MWh) plus middel distributionstarif an værk (133 DKK/MWh) plus PSO.

PSO antages linært udfaset frem mod 2025 fra et niveau i 2016 på 22 DKK/MWh, hvorefter PSO antages at være internaliseret i elspot.

Figur 43: Fremskrivning af samfundsøkonomisk elspot.
A 1.8 Statsfinancielle afgifter på brændsler og el

Tabel 11 viser de anvendte statsfinancielle afgifter, der antages konstante i faste priser i perioden med udgangspunkt i 2015 niveauet.

<table>
<thead>
<tr>
<th>Afgift</th>
<th>Enhed</th>
<th>Sats 2016-2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturgas Energi og CO2</td>
<td>DKK/Nm³</td>
<td>2,542</td>
</tr>
<tr>
<td>Naturgas NOx kraftvarmemotor</td>
<td>DKK/Nm³</td>
<td>0,146</td>
</tr>
<tr>
<td>Naturgas NOx kedel</td>
<td>DKK/Nm³</td>
<td>0,042</td>
</tr>
<tr>
<td>Naturgas methanafgift motor</td>
<td>DKK/Nm³</td>
<td>0,066</td>
</tr>
<tr>
<td>Biomasse NOx</td>
<td>DKK/GJ</td>
<td>2,4</td>
</tr>
<tr>
<td>Generel elafgift til fjernvarme</td>
<td>DKK/MWh-el</td>
<td>380</td>
</tr>
<tr>
<td>Elpatronordningen</td>
<td>DKK/MWh-varme</td>
<td>212</td>
</tr>
</tbody>
</table>

Tabel 11: Statsfinancielle afgifter på el og brændsler baseret på 2015-nivauet.

A 1.9 Grundbeløb

Grøn Energi gennemførte i november 2014 en analyse af konsekvenserne for grundbeløbets bortfald, der viser at antallet af værker, hvor varmeprisen overstiger varmeprisen med individuel naturgas øges fra 32% til 51% af værkerne, når grundbeløbet bortfalder i 2018/9 [22].

I analysen anvendte man et gennemsnitligt grundbeløb på 1 mio. DKK/MWe.

Det fremgår imidlertid af et bilag ifm. Energitilsynets arbejde [23], at anlæg på grundbeløb 1 i Østdanmark modtog 550.000 DKK/MWe, mens anlæg på grundbeløb 2 modtog 182.000 DKK/MWe, dog modtog barmarksværker 349.000 DKK/MWe. Det fremgår endvidere at en samlet værkskapacitet på 1.699 MW modtog grundbeløb 1, mens 817 MW modtager grundbeløb 2.

På denne baggrund kan beregnes et gennemsnitligt grundbeløb på 430.000 DKK/MWe, hvilket indgår i analysen som en fast årlig produktionsuafhængig samfundsoekonomisk indtægt i perioden 2016-2018 (inkl).

Det understreges at grundbeløbet håndteres som en samfundsoekonomisk indtægt – ikke statsfinanciel – pga. af grundbeløbets tilknytning til PSO tariffen.
A 2. Principdiagrammer for modelanlæg fra COMPOSE

A 2.1 CHP

Natural Gas

Natural Gas Boiler L

Natural Gas CHP E-Fo

2x CHP NG 3 MWq Engin

DH NG Boiler

Storage Heating

Demand Heating

Market Electricity

A 2.2 CHP-BB

Natural Gas

Natural Gas Boiler L

Natural Gas CHP E-Fo

2x CHP NG 3 MWq Engin

DH NG Boiler

Storage Heating

Demand Heating

Market Electricity

Biomass

Straw for Distribute

1 MW Straw Boiler

A 2.3 CHP-HP-WW, CHP-HP-GS, CHP-HP-AS

Natural Gas

Natural Gas Boiler L

Natural Gas CHP E-Fo

2x CHP NG 3 MWq Engin

DH NG Boiler

Storage Heating

Demand Heating

Market Electricity

Electricity

Electricity Spot DK1

HP-GS 3 MWq (DK1 201)
A 2.4 CHP-BB-HP-WW, CHP-BB-HP-AS

De to kasser "Electricity" og "Cooling" repræsenterer interne brændsler.

A 2.5 CHP-HP-FG

Kassen "Cooling" repræsenterer internt brændsel
A 2.7 CHP-SH-HP-CS

Kassen "Cooling" repræsenterer internt brændsel

A 2.8 BB-HP-GS
A 3. **Yderligere dokumentation**

Karakteristik: MS Access Database, MS Excel

Modelanalyser: COMPOSE, MS Excel

Modeladgang og filer kan rekvireres hos ENERGIANALYSE.DK.
A 4. **Referencer**

